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Abstract
We establish the completeness of some characteristic sets of non-normalizable
modes by constructing fully localized square steps out of them, with each
such construction expressly displaying the Gibbs phenomenon associated with
trying to use a complete basis of modes to fit functions with discontinuous
edges. As well as being of interest in and of itself, our study is also of
interest to the recently introduced large extra dimension brane-localized gravity
program of Randall and Sundrum, since the particular non-normalizable mode
bases that we consider (specifically the irregular Bessel functions and the
associated Legendre functions of the second kind) are associated with the tensor
gravitational fluctuations which occur in those specific brane worlds in which
the embedding of a maximally four-symmetric brane in a five-dimensional
anti-de Sitter bulk leads to a warp factor which is divergent. Since the brane-
world massless four-dimensional graviton has a divergent wavefunction in these
particular cases, its resulting lack of normalizability is thus not seen to be any
impediment to its belonging to a complete basis of modes, and consequently its
lack of normalizability should not be seen as a criterion for not including it in
the spectrum of observable modes. Moreover, because the divergent modes we
consider form complete bases, we can even construct propagators out of them
in which these modes appear as poles with residues which are expressly finite.
Thus, even though normalizable modes appear in propagators with residues
which are given as their finite normalization constants, non-normalizable modes
can just as equally appear in propagators with finite residues too—it is just that
such residues will not be associated with bilinear integrals of the modes.

PACS numbers: 02.30.Gp, 03.65.Ge, 04.50.Th, 11.25.−w

1. Introduction

In constructing complete bases of mode solutions to wave equations it is very convenient to
work with modes which are normalizable since they obey a closure relation. Specifically, if
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one has some complete orthonormal basis of modes fm(w) with eigenvalues labelled by m
and orthonormality relation∫ ∞

−∞
dw e−2A(w)fm(w)fm′(w) = δm,m′ , (1)

where e−2A(w) is an appropriate normalization measure, the completeness of the basis will
then require that any localized function be expandable in terms of the basis modes as

ψ(w) =
∑
m

amfm(w) (2)

with coefficients which are given as

am =
∫ ∞

−∞
dw e−2A(w)ψ(w)fm(w). (3)

With insertion of these coefficients back into equation (2) yielding

ψ(w) =
∫ ∞

−∞
dw′δ(w − w′)ψ(w′)

=
∑
m

∫ ∞

−∞
dw′ e−2A(w′)ψ(w′)fm(w′)fm(w), (4)

the arbitrariness of the choice of ψ(w) will then require that the basis modes obey a closure
relation of the form∑

m

fm(w′)fm(w) = e2A(w)δ(w − w′). (5)

With equation (5) being recognized as being a special case of equation (2) (namely the
expansion of the extremely localized δ(w) in a complete basis of fm(w) with coefficients
am = fm(0)), the notions of completeness and closure are often treated interchangeably in the
literature, with equation (5) not only often being referred to as being a completeness relation,
but with it even being regarded as being an essential requirement for a basis to be complete in
the first place.

It is the purpose of this paper to show that this need not in fact be the case and that modes
can be complete even when they do not obey equation (5) at all. Indeed, the steps which lead
from equation (1) to equation (5) only hold when the basis is one for which the integrals on
the left-hand side of equation (1) do in fact exist. With both equations (1) and (5) involving
bilinear functions of the basis modes, but with equation (2) only being a linear function of
the modes, it is still possible for the summation in equation (2) to be well defined even when
the bilinear expressions which appear in equations (1) and (5) are not. Moreover, the wave
equations for which fm(w) are the mode solutions are themselves only linear functions of
fm(w), and it should thus be immaterial to the completeness of their solutions as to whether
or not bilinear integrals of the modes exist. In general, then completeness of a basis has
to be understood as being the requirement that for localized functions ψ(w) there exists an
expansion of the form of equation (2) with finite coefficients am regardless of whether or not
the integrals on the left-hand side of equation (1) actually exist. Non-normalizable modes
whose behaviour is so bad as to cause these bilinear integrals to diverge can still be complete
in the sense of equation (2), with the am coefficients being such as to lead to total destructive
interference between fm(w) in the regions where fm(w) diverge. It is thus equation (2) which
has to be recognized as being the general statement of completeness, and in this paper we shall
confirm this by explicitly constructing localized square steps as sums over some characteristic
bases of divergent modes. While the existence or not of the normalization integrals of
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equation (1) is immaterial to a differential wave equation, if the solutions to the wave equation
are required to belong to a Hilbert space one can restrict to square integrable functions alone,
though otherwise there is no reason to discard any non-normalizable solutions1. Since wave
equations in classical physics do not act in a Hilbert space, in classical physics one is not free to
discard non-normalizable modes, and since classical physics wave equations play a prominent
role in classical gravity where they are associated with classical gravitational fluctuations
around classical gravity backgrounds, it is to classical gravity that we shall look for examples
in which to test whether non-normalizable modes can be complete.

2. Wave equations for gravitational fluctuations

The wave equations we shall explicitly explore are associated with the recently introduced
brane-localized gravity program of Randall and Sundrum [2, 3]. As introduced, the brane
gravity program provides for the possibility that our four-dimensional universe could be
embedded in some infinitely sized bulk space and yet not conflict with the fact that there
is no apparent sign of any such higher dimensional bulk. Specifically, by taking the higher
dimensional bulk to possess a very special geometry, namely the five-dimensional anti-de Sitter
geometry AdS5, and by taking our four-dimensional universe to be a brane (i.e. membrane)
embedded in it, Randall and Sundrum found that under certain circumstances it was then
possible for gravitational signals to localize around the brane and not penetrate very far into
the bulk, with AdS5 acting as a sort of refractive medium which rapidly attenuates any signals
which try to propagate in it. Within the Randall–Sundrum brane world there are six fully
soluble set-ups (technically AdS5 bulks with embedded Minkowski, de Sitter or anti-de Sitter
branes each with either positive or negative tension λ—to be referred to as the M±

4 , dS±
4 and

AdS±
4 brane worlds in the following), with all six of them having backgrounds which can be

described by the generic five-dimensional metric

ds2 = dw2 + e2A(|w|)qµν(x
λ) dxµ dxν (6)

where the w-independent qµν is the four-dimensional metric and the so-called warp factor
e2A(|w|) is taken to be a function of |w| where w is the fifth coordinate. With the curvature of
AdS5 being taken to be given as −b2, in the various cases the explicit background metrics are
given as

ds2
(
M±

4

) = dw2 + e−2ε(λ)b|w|[dx2 + dy2 + dz2 − dt2], (7)

ds2(dS±
4

) = dw2 +
H 2

b2
sinh2

[
arcsinh

(
b

H

)
− ε(λ)b|w|

]
[e2Ht (dx2 + dy2 + dz2) − dt2],

(8)

and

ds2
(
AdS±

4

) = dw2 +
H 2

b2
cosh2

[
arccosh

(
b

H

)
− ε(λ)b|w|

]
[dx2 + e2Hx(dy2 + dz2 − dt2)],

(9)

1 Even in quantum mechanics we note that the Schrödinger equation H |ψ〉 = E|ψ〉 is an operator equation which
acts linearly on the ket vector |ψ〉, with its existence being independent of what particular dual vector bra 〈ψ | might
be used to construct the bilinear norm 〈ψ |ψ〉. There is thus freedom available in choosing the dual space vectors, with
choices for them other than simply as the conjugates of the kets having been found to lead to a sensible probability
interpretation in the case of theories with a non-Hermitian potential (the first part of [1]) or an indefinite metric (the
fourth-order oscillator theory discussed in the second part of [1]). Even in quantum mechanics then, imposing the
finiteness of the 〈ψ |ψ〉 norm is not the most general requirement that one can consider.
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where ε(λ) is the sign of λ. (The M±
4 background metrics are given in [2, 3], the dS±

4
background metrics are given in [4, 5] and the AdS±

4 background metrics are given in [4].)
For the brane world the gravitational fluctuations around these six backgrounds are most

readily treated in the axial gauge where the transverse-traceless tensor fluctuation modes hTT
µν

then all obey the generic wave equation (see, e.g., [6] where full derivations and relevant
citations are given)[

∂2

∂|w|2 − 4

(
dA

d|w|
)2

+ e−2A∇̃α∇̃α

]
hTT

µν = 0, (10)

as subject to the constraint (technically the Israel junction condition)

δ(w)

[
∂

∂|w| − 2
dA

d|w|
]

hTT
µν = 0 (11)

at a brane which is located at w = 0. In equation (10), the tildes in ∇̃α∇̃α indicate that
these particular covariant derivatives are to be evaluated in the geometry associated with the
four-dimensional qµν . And with the four-dimensional sector of the theory being separable
according to

[∇̃α∇̃α − 2kH 2]hTT
µν = m2hTT

µν, (12)

as defined here so that tensor fluctuations with m2 = 0 propagate on the appropriate dS4,M4

or AdS4 lightcones (k = 1, 0,−1, respectively), a separation of the modes into the form
hTT

µν = fm(|w|)eµν(x
λ,m) then requires that fm(|w|) obey[

d2

d|w|2 − 4

(
dA

d|w|
)2

− 2

(
d2A

d|w|2
)

+ e−2Am2

]
fm(|w|) = 0 (13)

(in each of the six background cases of interest to us the identity d2A/d|w|2 = −kH 2 e−2A

holds), as subject to the constraint

δ(w)

[
d

d|w| − 2
dA

d|w|
]

fm(|w|) = 0. (14)

Our task is thus to explore the completeness of solutions to equations (13) and (14), and a
reader unfamiliar with the physics of the brane world can start at this point as none of the
analysis which ensues will depend on how equations (13) and (14) were first arrived at. What
will matter in the following is only that these equations admit of exact solutions, solutions
whose large |w| behaviour can then explicitly be monitored.

Before actually identifying explicit solutions to equations (13) and (14) for the specific
choices of A and ε(λ) of interest, we note that via manipulation of equation (13) we find that
every pair of its solutions have to obey

e−2A
(
m2

1 − m2
2

)
fm1fm2 = d

d|w|
[
fm1

(
d

d|w| − 2
dA

d|w|
)

fm2 − fm2

(
d

d|w| − 2
dA

d|w|
)

fm1

]
,

(15)

which with equation (14) then requires the modes to obey(
m2

1 − m2
2

) ∫ ∞

0
d|w| e−2Afm1fm2

= lim
|w|→∞

[
fm1

(
d

d|w| − 2
dA

d|w|
)

fm2 − fm2

(
d

d|w| − 2
dA

d|w|
)

fm1

]
. (16)

Orthogonality of modes with different separation constants is thus achieved when the modes
are well-enough behaved at |w| = ∞ to cause the right-hand side of equation (16) to vanish
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(with the orthogonality measure then being precisely the one we introduced in equation (1)),
with modes which diverge badly enough at infinity causing the integral on the left-hand side
to not exist. While one could now proceed to determine the mode solutions and identify for
which particular ones the integral on the left-hand side of equation (16) converges or diverges,
before doing so it is instructive to recall that via a sequence of transformations it is possible to
bring equation (13) to a more familiar form. Specifically, if we change variables from w to z

by setting dz = e−A(w)dw and define fm = eA(z)/2f̂ m, f̂ m will then obey [3][
− d2

dz2
+

9

4

(
dA

dz

)2

+
3

2

d2A

dz2
− m2

]
f̂ m = 0, (17)

while at the same time the normalization integral will change as∫ ∞

0
d|w| e−2Afm1(|w|)fm2(|w|) →

∫ z[∞]

z[0]
dzf̂ m1(z)f̂ m2(z). (18)

While we thus recognize equation (17) as being in the familiar form of a one-dimensional
Schrödinger equation and equation (18) as being in the form of its conventional quantum-
mechanical normalization integral, nonetheless, as noted above, since in the cases which are
of interest to us here we are not requiring the f̂ m modes to belong to a Hilbert space, we should
not discard the non-normalizable solutions to equation (17).2 And having now recognized the
rationale for not discarding non-normalizable solutions, we return to equations (13) and (14)
to actually find and then explore them.

3. Completeness tests for the Minkowski brane cases

3.1. Positive tension case

For the M+
4 case where A = −b|w|, the solutions to equation (13) are readily obtained by

setting y = m eb|w|/b as this transformation brings equation (13) to the Bessel equation form[
d2

dy2
+

1

y

d

dy
+ 1 − 4

y2

]
fm(y) = 0. (19)

Mode solutions with any positive m2 are thus given by

fm(y) = αmJ2(y) + βmY2(y) (20)

where αm and βm are y-independent coefficients, with those solutions with m2 = 0 being
given directly from equation (13) as

f0(y) = α0 e−2b|w| + β0 e2b|w|. (21)

To satisfy the junction condition of equation (14) then requires that the various mode
coefficients obey

αmJ1(m/b) + βmY1(m/b) = 0, β0 = 0, (22)

with the continuum of m2 > 0 modes thus satisfying the junction condition via an interplay of
the two types of Bessel function, and the m2 = 0 mode f0(y) = α0 e−2b|w| satisfying it all on

2 Even in quantum mechanics one does not discard plane wave modes even though they cause the integral on the
right-hand side of equation (18) to diverge, since divergent as they may be, one can still construct localized wave
packets out of them. In this respect then, the point of this paper will be to construct localized configurations out of
basis vectors which diverge even more rapidly than plane waves. And while we shall restrict the study of this paper
to the classical-mechanical context, we note that within a quantum-mechanical context such localized configurations
could still belong to a Hilbert space even if the basis vectors themselves out of which they are built do not.
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its own. In the brane world the m2 > 0 modes are known as the KK (Kaluza–Klein) modes,
while the m2 = 0 mode serves as a massless graviton. At large y, these solutions behave as

fm →
(

2

πy

)1/2

[αmcos (y − 5π/4) + βmsin (y − 5π/4)] , f0 → α0m
2

b2y2
. (23)

With all of these modes having wavefunctions which fall very fast in |w| as we go away from
the brane, the gravitational fluctuation modes are thus localized around it, this being the key
result of [3]. With the measure of the normalization integral being rewriteable as∫ ∞

0
d|w| e2b|w| = b

∫ ∞

1/b

dx x (24)

on setting x = eb|w|/b, we see that the massless graviton wavefunction is bound state
normalizable and that the KK modes possess the same continuum normalization as flat space
Bessel functions. Consequently, the totality of massless graviton plus KK continuum modes
is complete in exactly the same way as plane waves, with both of equations (1) and (5) being
satisfied (the summation in equation (5) is understood to contain both discrete and continuous
indices). While we thus see that there is no need to perform any explicit completeness test for
the modes of M+

4 as everything is standard, a quite different situation will emerge when we
consider M−

4 .

3.2. Negative tension case

For the M−
4 case where A = +b|w|, the m2 > 0 and the m2 = 0 solutions to equation (13) are

given by

fm(y) = αmJ2(y) + βmY2(y), (25)

and

f0(y) = α0 e−2b|w| + β0 e2b|w|, (26)

where now y = m e−b|w|/b, while to satisfy the junction condition of equation (14) this time
requires

αmJ1(m/b) + βmY1(m/b) = 0, α0 = 0. (27)

Unlike the M+
4 case this time y goes to zero as |w| goes to infinity, with large |w| asymptotics

now being controlled by the behaviour of Bessel functions at small argument rather than large,
with the solutions behaving at small y as

fm → αmy2

8
− 4βm

πy2
, f0 → β0m

2

b2y2
(28)

(Y2(y) behave irregularly at small argument). With the measure of the normalization integral
now being given as∫ ∞

0
d|w| e−2b|w| = b

∫ 1/b

0
dx x (29)

on setting set x = e−b|w|/b, this time we see that it is only the J2(y) modes which are
normalizable, and that the massless graviton wavefunction and all the Y2(y) modes are not
only non-normalizable, they diverge far too violently to even be plane wave normalizable. In
order to be able to satisfy the junction condition of equation (27) with normalizable modes
alone, the convergent J2(y) modes would have to satisfy equation (27) all by themselves, with
the modes then needing to obey J1(m/b) = 0. Solutions to this condition exist and are given
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as the zeros, ji , of the Bessel function J1. This set of zeros is discrete and infinite, with the
normalizable modes of the M−

4 brane world then being given as modes with masses mi = bji .
Similarly, the divergent Y2(y) modes can satisfy the junction condition all on their own if
their masses obey mi = byi , where yi are the zeros of the Bessel function Y1, to yield another
infinite set of discrete modes. With the divergent massless graviton mode with wavefunction
β0 e2b|w| also satisfying the junction condition on its own, we thus recognize two classes of
basis modes in the M−

4 brane world, the convergent J2(ji e−b|w|), and the divergent e2b|w| and
Y2(yi e−b|w|). And while our objective is to apply a completeness test to the divergent mode
basis, it will be instructive to actually apply a completeness test to the convergent M−

4 mode
basis first.

4. Completeness test for convergent M−
4 modes

To test for completeness of a basis, we need to determine whether it is possible to expand the
typical localized square step VJ = V̂ , α � e−b|w|/b � β, VJ = 0 otherwise in terms of the
modes of the basis, namely we seek to find a set of Vm from which we can reconstruct the
square step according to

VJ (|w|) =
∑
m

VmJ2(m e−b|w|/b). (30)

To determine the needed coefficients Vm, we apply
∫ ∞

0 d|w| e−2b|w|J2(m e−b|w|/b) to
equation (30) and use the orthogonality relations that the asymptotically well-behaved
J2(m e−b|w|/b) modes obey. Specifically, with the right-hand side of equation (16) vanishing
for these modes, the modes will then obey∫ ∞

0
d|w| e−2b|w|J2(m e−b|w|/b)J2(m

′ e−b|w|/b) = 0 (31)

when m is not equal to m′, with use of some standard properties of Bessel functions obliging
them to obey∫ ∞

0
d|w| e−2b|w|J 2

2 (m e−b|w|/b) = b

∫ 1/b

0
dx xJ 2

2 (mx)

= b
x2

2

[
J 2

2 (mx) − J1(mx)J3(mx)
] ∣∣1/b

0 = J 2
2 (m/b)

2b
(32)

when m and m′ are equal and m is such that J1(m/b) is zero. Armed with equations (31) and
(32) we thus find that VJ (|w|) is to be given by

VJ (|w|) =
∑
m

2bBm

J 2
2 (m/b)

J2(m e−b|w|/b), (33)

where the coefficients Bm are given by

Bm =
∫ ∞

0
d|w| e−2b|w|VJ (|w|)J2(m e−b|w|/b) = −bV̂

∫ β

α

x dxJ2(mx)

= −bV̂

m2

∫ mβ

mα

[2J1(x) − xJ0(x)] = bV̂

m2
[2J0(x) + xJ1(x)]|mβ

mα

= bV̂

m2
[2J0(mβ) + mβJ1(mβ)] − bV̂

m2
[2J0(mα) + mβJ1(mα)]. (34)

With every quantity which appears in equation (33) now being known, VJ (|w|) can readily be
plotted, and we display it in figure 1 as evaluated3 through the use of the first 1000 modes in

3 While equation (33) is given in closed form, the actual sum over modes is itself done numerically.
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0.0 0.2 0.4 0.6 0.8 1.0
e-w

0

0.5

1

V J
(w

)

0.1 0.2 0.3 0.4

1

1.1

Figure 1. The left panel shows a reconstruction of the square step VJ (|w|) = 1, 1 < |w| <

2, VJ = 0 otherwise via the M−
4 discrete J2(ji e−b|w|) mode basis, with the parameter b being set

equal to one. The right panel shows a blow-up of the region near the top of the step.

the sum4. As we see, the basis is indeed capable of generating the square step to very high
accuracy, with its completeness thus being confirmed.

With regard to the plot in figure 1, as can be seen from the blow-up of the region near the
top of the step, the mode sum expressly displays the Gibbs phenomenon associated with trying
to fit a discontinuity with a complete basis, with there being an overshoot (to near VJ = 1.1 in
the figure) at the top of the discontinuity and an accompanying undershoot at the bottom, an
overshoot and undershoot which as required of the Gibbs phenomenon were explicitly found
to get narrower (in |w|) as the number of modes in the sum was increased, but not to shorten
in height, always reaching close to VJ = 1.1 in the figure. We regard the recovering of the
Gibbs phenomenon as a very good indicator of the reliability of our construction, and together
with the quality of the overall fit itself, as providing very good evidence for completeness of
the convergent M−

4 mode basis.

5. Completeness test for divergent M−
4 modes

To test for completeness of the divergent Y2(yi e−b|w|) plus e2b|w| mode basis, we try to
reconstruct the square step via the expansion

VY (|w|) =
∑

n

VnY2(n e−b|w|/b) + V0 e2b|w|. (35)

(In equation (35) we use n to denote the yi zeros of Y1(y), and shall use m to denote the ji

zeros of J1(y).) Now while such a reconstruction might at first be thought unlikely to succeed
since every term on the right-hand side of equation (35) diverges badly in the large |w| region
where we need the summation to vanish, the various terms in equation (35) are not diverging
arbitrarily but, as can be seen from equation (28), are actually all diverging in exactly the same
e2b|w| manner. In consequence of this, we are therefore able to adjust the various coefficients
in equation (35) so as to expressly cancel out the divergent part. However, in order to get
VY (|w|) to actually vanish rather than merely not diverge outside the step, we will also need

4 This particular completeness test was carried out in collaboration with Dr A H Guth, Dr D I Kaiser and
Dr A Nayeri, and grew out of a study of brane-world fluctuations in which they were engaged with one of us
(PDM).
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to cancel the finite part there as well. Thus, with each Y2(y) having a leading behaviour of the
form −4/πy2 − 1/π at small argument, i.e. with equation (35) behaving as

VY (|w|) → e2b|w|
[
V0 − 4b2

π

∑
n

Vn

n2

]
− 1

π

∑
n

Vn (36)

at large |w|, we need to impose the two conditions
4b2

π

∑
n

Vn

n2
= V0,

∑
n

Vn = 0 (37)

on the coefficients, with the two leading large |w| terms then being cancelled.
Having thus taken care of the leading behaviour at large |w|, we now try to proceed as

with our analysis of the expansion of VJ (|w|) in convergent modes. However, we cannot
simply apply

∫ ∞
0 d|w| e−2b|w|Y2(n e−b|w|/b) to equation (35) as every overlap integral would

diverge. However, we have found it very convenient to apply
∫ ∞

0 d|w| e−2b|w|J2(m e−b|w|/b)

to equation (35) instead, where we take m/b to be the ji zeros of J1(y). With none of the
J1(m/b) zeros coinciding with any of the zeros of Y1(n/b),5 the needed overlap integrals are
given (on setting x = e−b|w|/b) by∫ ∞

0
d|w| e−2b|w|J2(m e−b|w|/b)Y2(n e−b|w|/b) = b

∫ 1/b

0
dx xJ2(mx)Y2(nx)

= bx

[
nY1(nx)J2(mx) − mJ1(mx)Y2(nx)

(m2 − n2)

] ∣∣∣∣
1/b

0

= 2bm2

πn2(n2 − m2)
, (38)

and∫ ∞

0
d|w| e−2b|w|J2(m e−b|w|/b) e2b|w| = 1

b

∫ 1/b

0

dx

x
J2(mx)

= −1

b

∫ 1/b

0
dx

d

dx

(
J1(mx)

mx

)
= 1

2b
, (39)

overlap integrals which despite the badly divergent behaviour of Y2(y) and e2b|w| are
nonetheless actually finite due to the compensating convergent behaviour of J2(y). On
thus applying

∫ ∞
0 d|w| e−2b|w|J2(m e−b|w|/b) to equation (35), we find that for the square step

VY (|w|) = V̂ , α � e−b|w|/b � β, VY (|w|) = 0 otherwise, the expansion coefficients must
thus obey

V0

2b
+

2b

π

∑
n

Vn

m2

n2(n2 − m2)
= V0

2b
+

2b

π

∑
n

Vn

[
1

(n2 − m2)
− 1

n2

]

= 2b

π

∑
n

Vn

(n2 − m2)
= Bm (40)

for all m, where the Bm coefficients are given by

Bm = −bV̂

∫ β

α

dx xJ2(mx) = bV̂

m2
[2J0(mx) + mxJ1(mx)]|βα

= bV̂

m2
[2J0(mβ) + mβJ1(mβ)] − bV̂

m2
[2J0(mα) + mαJ1(mα)]. (41)

5 The zeros of J1(y) and Y1(y) are simple, discrete ones which interlace each other, with first three positive zeros
of J1(y) for instance occurring at 3.832, 7.016 and 10.173, and with the nth positive zero being well approximated
by jn ≈ (n + 1/4)π when n is large; while the first three positive zeros of Y1(y) occur at 2.197, 5.430 and 8.596,
with the nth positive zero being well approximated by yn ≈ (n − 1/4)π when n is large. While these particular
approximations do not hold at small n, the parameter n which appears in the jn ≈ (n + 1/4)π and yn ≈ (n − 1/4)π

expressions does denote the number of the zero (counting the first positive zero as n = 1), so that for n large or small
these expressions give a correct counting of the number of zeros.
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Figure 2. The left panel shows a reconstruction of the square step VY (|w|) = 1, 1 < |w| <

2, VY = 0 otherwise via the M−
4 discrete Y2(yi e−b|w|) plus e2b|w| mode basis, with the parameter

b being set equal to one. The right panel shows a blow-up of the region near the top of the step.

With Bm being given in closed form, equation (40) is thus a set of N equations for N unknowns
and can be viewed as an eigenvalue equation for Vn. (While the J2(m e−b|w|/b)Y2(ne−b|w|/b)

overlap integrals of equation (38) are finite, the J2(m e−b|w|/b) and Y2(n e−b|w|/b) modes
are not orthogonal, with equation (40), unlike equation (33), thus not being diagonal in its
indices.) The Vn coefficients can thus be determined and, on being found to be finite and
rapidly oscillating in sign, lead, for the case of the first 1000 modes in the basis, to the plot
displayed in figure 2 (i.e., we restrict to the first 1000 yi and the first 1000 ji in equation (40)).
As figure 2 thus indicates, and quite spectacularly so, the divergent mode basis is every bit
as capable of reconstructing the square step as the convergent one and every bit as capable
of recovering the Gibbs phenomenon, and is thus every bit as complete6. It is thus invalid to
use normalizability as a criterion for discarding modes as non-normalizable modes are fully
capable of serving as a complete basis for constructing localized packets7. As a final comment,
we recall that for the harmonic oscillator wave equation there are two sets of solutions, the
sines and the cosines, and both sets are complete. It is hence perfectly reasonable to expect
other second-order wave equations to also have two complete sets of bases even if one of them
consists entirely of divergent modes.

6. Completeness tests for the anti-de Sitter brane cases

6.1. The basis modes

For AdS+
4 brane world with warp factor eA(|w|) = Hcosh(σ − b|w|)/b where cosh σ = b/H ,

the transformation y = tanh(b|w| − σ) brings equation (13) to the form[
(1 − y2)

d2

dy2
− 2y

d

dy
+ ν(ν + 1) − 4

(1 − y2)

]
fm(y) = 0. (42)

where we have introduced the convenient parameter ν defined by

ν =
(

9

4
+

m2

H 2

)1/2

− 1

2
,

m2

H 2
= (ν − 1)(ν + 2). (43)

6 The reconstruction of the square step using the divergent mode basis is so good that the only perceptible difference
between figures 1 and 2 is that in the region close to e−w = 0, the J2(m e−b|w|/b) contribution is ever so slightly
thicker. (The constraints of equation (37) force a more rapid convergence on the Y2(n e−b|w|/b) mode sum.)
7 For the M−

4 brane world this is just as well, since it could otherwise not contain any massless graviton.
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Equation (42) is recognized as an associated Legendre equation, with its solutions being the
associate Legendre functions of the first and second kinds, so that for m �= 0 (namely ν �= 1)
we can set

fm(y) = αmP 2
ν (y) + βmQ2

ν(y). (44)

This solution also applies to one of the m = 0 solutions as well, namely Q2
1(y), a quantity

which can be written in terms of the warp factor as Q2
1(y) = 2/(1−y2) = 2 cosh2(b|w|−σ) =

2b2 e2A(|w|)/H 2, but misses one other solution since P 2
1 (y) is kinematically zero. This second

m = 0 solution can be found by setting ν = 1 in equation (42) and solving it directly, to yield

f0(y) = α0

(
2

(1 + y)
− y

)
+ β0Q

2
1(y). (45)

Requiring the modes to also obey the junction condition of equation (14) then restricts them
according to

αmP 1
ν (−tanh σ) + βmQ1

ν(−tanh σ) = 0, α0 = 0, (46)

to thus define the AdS+
4 brane world basis modes.

As functions, all of the functions P 1
ν (y), P 2

ν (y), Q1
ν(y) and Q2

ν(y) possess a cut in the
complex y plane which can be located to run from y = −∞ to y = 1. For the AdS+

4 brane world
the parameter y = tanh(b|w| − σ) lies in the range −tanh σ � y � 1, and so in this range the
Legendre functions have to be evaluated on the cut (as the real P µ

ν (y) = (1/2)[eiπµ/2P µ
ν (y +

iε) + e−iπµ/2P µ
ν (y − iε)], Qµ

ν (y) = (e−iπµ/2)[e−iπµ/2Qµ
ν (y + iε) + eiπµ/2Qµ

ν (y − iε)]) where
they can then be power series expandable via their relation to hypergeometric functions to
yield

P m
ν (y) = (−1)m�(ν + m + 1)

2mm!�(ν − m + 1)
(1 − y2)m/2F(ν + m + 1,−ν + m;m + 1; (1 − y)/2)

= (−1)m�(ν + m + 1)

2mm!�(ν − m + 1)
(1 − y2)m/2

[
1 +

(ν + m + 1)(−ν + m)

(m + 1)1!

(1 − y)

2

+
(ν + m + 1)(ν + m + 2)(−ν + m)(−ν + m + 1)

(m + 1)(m + 2)2!

(1 − y)2

22
+ · · ·

]
,

Qm
ν (y) = eimπ 2ν�(ν + 1)�(ν + m + 1)

�(2ν + 2)(1 + y)ν+1−m/2(1 − y)m/2
F(ν − m + 1, ν + 1; 2ν + 2; 2/(1 + y))

= eimπ2ν�(ν + 1)�(ν + m + 1)

(1 + y)ν+1−m/2(1 − y)m/2

[
�(m)

�(ν + 1)�(ν + m + 1)

×
m−1∑
n=0

(ν − m + 1)n(ν + 1)n

(1 − m)nn!

(y − 1)n

(y + 1)n
+

(−1)m(y − 1)m

�(ν − m + 1)�(ν + 1)(y + 1)m

×
∞∑

n=0

(ν + 1)n(ν + m + 1)n

(n + m)!n!

(y − 1)n

(y + 1)n

[
ψ(n + 1) + ψ(n + m + 1)

− ψ(ν + 1 + n) − ψ(ν + m + 1 + n) − log

(
1 − y

1 + y

)]]
(47)

when µ is a general positive integer m. (In equation (47), ψ(y) denotes (d�(y)/dy)/�(y)

and (a)n denotes �(a + n)/�(a).) From equation (47) we see that in the −tanh σ � y � 1
range of interest the P 2

ν (y) functions are well behaved, behaving as y approaches one from
below (namely as |w| → ∞) as

P 2
ν (y → 1) → P(ν)

[
(1 − y) − (1 − y)2(ν2 + ν − 3)

6

]
(48)
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where

P(ν) = ν(ν2 − 1)(ν + 2)

4
, (49)

to thus be fully normalizable and have finite normalization

Nν =
∫ ∞

−∞
dw e−2A

[
P 2

ν (|w|)]2 = 2
∫ ∞

0
d|w| e−2A

[
P 2

ν (|w|)]2 = 2b

H 2

∫ 1

−tanh σ

dy
[
P 2

ν (y)
]2

.

(50)

However, unlike the P 2
ν (y), the Q2

ν(y) are all found to diverge at y = 1, behaving there as

Q2
ν(y → 1) → 1

(1 − y)
+

(ν2 + ν − 1)

2
+ O((1 − y)ln(1 − y)), (51)

and thus in the AdS+
4 brane world none of Q2

ν(y), and particularly the massless Q2
1(y) graviton,

are normalizable. We shall thus seek to construct complete bases in both the normalizable and
non-normalizable sectors.

6.2. Completeness test for convergent AdS+
4 modes

To construct a complete basis out of normalizable modes alone requires that the normalizable
P 2

ν (y) satisfy equation (46) all on their own, with the eigenmodes then needing to satisfy

P 1
ν (−tanh σ) = P 1

ν (−(1 − H 2/b2)1/2) = 0. (52)

For arbitrary σ the solutions to equation (52) cannot be written in a closed form, but on noting
that for one particular value of σ , namely σ = 0 (i.e., H = b), P 1

ν (0) is known in closed form
as

P 1
ν (0) = 2π1/2

�(ν/2 + 1/2)�(−ν/2)
, (53)

to thus be zero at ν = 2, 4, 6, . . ., we see that on solving for an arbitrary given σ numerically
an infinite discrete set of allowed ν values will then be found to ensue8. The normalizable
mode sector of AdS+

4 is thus discrete and infinite, a result first obtained in [7] by directly
numerically solving equation (13).

To test for completeness of the normalizable AdS+
4 mode basis, we need to find a set of

coefficients Vm for which the expansion

VP =
∑
m

VmP 2
ν (y) (54)

reproduces the square step VP = V̂ when |w1| < |w| < |w2|, VP = 0 otherwise. With
the P 2

ν (y) modes being orthogonal, the coefficients are readily given as Vm = Bm/Nν where
Nν is the normalization factor given in equation (50), where m and ν are related as in
equation (43), and where some standard properties of the associated Legendre functions allow
the Bm coefficients to be written as

Bm = V̂

∫ |w2|

|w1|
d|w| e−2AP 2

ν (|w|) = V̂ b

H 2

∫ y2

y1

dyP 2
ν (y) = V̂ b

H 2

∫ y2

y1

dy(1 − y2)
d2Pν(y)

dy2

= V̂ b

H 2

∫ y2

y1

dy

[
d

dy
[(2 − ν)yPν + νPν−1] − 2Pν

]
8 The typical case of tanh σ = 0.9 (namely H/b = 0.436) yields ν = 1.088, 2.216 and 3.362 as the
three lowest positive solutions to P 1

ν (−tanh σ) = 0, with the nth positive zero being well approximated by
νn ≈ (n + 1/4)π/arccos(−tanh σ) − 1/2 when n is large.
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Figure 3. The left panel shows a reconstruction of the square step VP (w) = 1, 0.1 �
tanh(b|w|−arctanh(0.9)) � 0.2, VP (w) = 0 otherwise, via the AdS+

4 discrete P 2
ν (tanh(b|w|−σ))

mode basis in the typical case where tanh σ = 0.9,H/b = 0.436 and b = 1. The right panel
shows a blow-up of the region near the top of the step.

= V̂ b

H 2

∫ y2

y1

dy
d

dy

[
(2 − ν)

(2ν + 1)
[(ν + 1)Pν+1 + νPν−1] + νPν−1 − 2

(2ν + 1)
(Pν+1 − Pν−1)

]

= V̂ b

H 2

[
(ν + 1)(ν + 2)Pν−1 − ν(ν − 1)Pν+1

2ν + 1

] ∣∣∣∣
y2

y1

. (55)

With every quantity which appears in equation (54) now being known, VP (|w|) can readily
be plotted, and we display it in figure 3 as evaluated through the use of the first 1000 modes
in the sum. As we see, the basis is indeed capable of generating the square step to very high
accuracy, and with it expressly displaying the Gibbs phenomenon9, its completeness is thus
confirmed.

6.3. Completeness test for divergent AdS+
4 modes

With the massless AdS+
4 graviton with divergent warp factor wavefunction f0(y) = β0Q

2
1(y) =

2β0/(1 − y2) obeying the junction condition, it could also belong to a complete basis of
divergent Q2

ν(y) modes (modes which according to equation (51) actually diverge in precisely
the same 1/(1 − y) way near y = 1 as the massless graviton itself) if the Q2

ν(y) modes were
to satisfy the junction condition on their own, i.e. if they were to obey

Q1
ν(−tanh σ) = Q1

ν(−(1 − H 2/b2)1/2) = 0. (56)

With equation (56) being found to possess an infinite set of discrete solutions for the
arbitrary σ ,10 we shall thus seek to expand the localized square step VQ = V̂ when
|w1| � |w| � |w2|, VQ = 0 otherwise, in terms of these solutions as

VQ =
∑

n

VnQ
2
ν(y) +

V0

1 − y2
. (57)

9 It is possible that this might perhaps be the first time that the Gibbs phenomenon has explicitly been demonstrated
for associated Legendre functions, and especially for the divergent Q2

ν(y) modes which we show below.
10 The typical case of tanh σ = 0.9 yields ν = 0.536, 1.649 and 2.788 as the three lowest positive solutions to
Q1

ν(−tanh σ) = 0, with the nth positive zero being well approximated by νn ≈ (n − 1/4)π/arccos(−tanh σ) − 1/2
when n is large, with the zeros of P 1

ν (−tanh σ) = 0 and Q1
ν(−tanh σ) = 0 thus interlacing each other. As regards

the Q1
ν(−tanh σ) = 0 solutions, we note additionally that the lowest positive one actually corresponds to an m2 < 0

tachyon since it has ν < 1.
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(For clarity we use n2 here to denote the squared masses n2/H 2 = (ν − 1)(ν + 2) of the
Q2

ν(y) sector modes, and use m2 for the P 2
ν (y) sector.) Given the asymptotic limit exhibited

in equation (51), in order to first cancel both the leading 1/(1−y) term and the next to leading
O(1) term from the right-hand side of equation (57), we must constrain the Vn coefficients
according to ∑

n

Vn +
V0

2
= 0,

1

2

∑
n

Vn(ν
2 + ν − 1) +

V0

4
= 0, (58)

to thus enable us to reexpress the square step expansion as

VQ =
∑

n

Vn

[
Q2

ν(y) − 2

1 − y2

]
, (59)

as subject to the constraint∑
n

Vn[ν2 + ν − 2] =
∑

n

Vn

n2

H 2
= 0. (60)

While we cannot apply
∫ ∞

0 d|w| e−2AQ2
ν(y) to equation (59) as every overlap integral

would diverge, finite overlap integrals are obtained if we instead apply
∫ ∞

0 d|w| e−2AP 2
ν ′(y),

where we use ν ′ to label the P 2
ν ′(y) sector so that its squared masses are given by

m2/H 2 = (ν ′ − 1)(ν ′ + 2). With none of the P 1
ν ′(−tanh σ) and Q1

ν(−tanh σ) zeros being
found to coincide, via equations (16), (48) and (51), the needed overlap integrals are found to
be of the form ∫ ∞

0
d|w| e−2AP 2

ν ′(y)Q2
ν(y) = 4bP (ν ′)

(m2 − n2)
(61)

(P(ν ′) is given in equation (49)), and are indeed finite, just as required. With the overlap
integral which involves the massless graviton mode being given by∫ ∞

0
d|w| e−2A P 2

ν ′(y)

(1 − y2)
= 2bP (ν ′)

m2
, (62)

the application of
∫ ∞

0 d|w| e−2AP 2
ν ′(y) to equation (59) thus yields

4b
∑

n

VnP (ν ′)
[

1

(m2 − n2)
− 1

m2

]
=

∑
n

Vn

b(m2 + 2H 2)n2

H 4(m2 − n2)
= Bm, (63)

where Bm is the same function that was already given earlier in equation (55).
Given equation (63), the Vn coefficients can now be found numerically, and lead, for the

case of the first 1000 modes in the basis, to the plot displayed in figure 4 (i.e., we restrict to
the first 1000 P 1

ν ′(−tanh σ) zeros and the first 1000 Q1
ν(−tanh σ) zeros). As figure 4 thus

indicates, the divergent mode basis is every bit as capable of reconstructing the square step
as the convergent one and every bit as capable of recovering the Gibbs phenomenon, and is
thus every bit as complete11. Once again then we see that it is invalid to use normalizability
as a criterion for discarding modes, and in this regard we differ from the view of [7] that it is
permissible to discard modes such as the massless AdS+

4 graviton simply because they are not
normalizable12.
11 The construction is so good that the only perceptible difference between figures 3 and 4 is that in the regions close
to the edges of the steps the Gibbs phenomenon overshoot, as shown in figure 3 blow-up is ever so slightly closer to
1.1 than the one shown in the blow-up of figure 4.
12 Since the negative tension AdS−

4 brane world with divergent warp factor eA(|w|) = Hcosh(σ + b|w|)/b also has
convergent P 2

ν (y) and divergent Q2
ν(y) modes (where now y = tanh(b|w| + σ) with range tanh σ � y � 1), its

structure is analogous to that of the divergent warp factor AdS+
4 world, and so we do not seek completeness tests for

it here.
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Figure 4. The left panel shows a reconstruction of the square step VQ(w) = 1, 0.1 �
tanh(b|w|−arctanh(0.9)) � 0.2, VQ(w) = 0 otherwise, via the AdS+

4 discrete Q2
ν(tanh(b|w|−σ))

plus cosh2(tanh(b|w| − σ)) mode basis in the typical case where tanh σ = 0.9,H/b = 0.436 and
b = 1. The right panel shows a blow-up of the region near the top of the step.

7. Completeness tests for the de Sitter brane cases

7.1. The basis modes

For dS±
4 brane worlds with warp factor eA(|w|) = H sinh(σ ∓ b|w|)/b where sinh σ = b/H ,

the transformation y = coth(σ ∓ b|w|) brings equation (13) to the form[
(1 − y2)

d2

dy2
− 2y

d

dy
+ ν(ν + 1) − 4

(1 − y2)

]
fm(y) = 0, (64)

where we have introduced the convenient parameter ν defined by

ν =
(

9

4
− m2

H 2

)1/2

− 1

2
,

m2

H 2
= (1 − ν)(ν + 2). (65)

Recognizing equation (64) to be the previously discussed associated Legendre equation, its
m �= 0 (namely ν �= 1) solutions are given as

fm(y) = αmP 2
ν (y) + βmQ2

ν(y), (66)

while its ν = 1 solutions are of the form

f0(y) = α0

(
2

(1 + y)
− y

)
+ β0Q

2
1(y). (67)

Requiring the modes to also obey the junction condition of equation (14) then restricts them
according to

αmP 1
ν (coth σ) + βmQ1

ν(coth σ) = 0, α0 = 0, (68)

to thus define the dS±
4 brane-world basis modes.

While the dS+
4 and dS−

4 basis modes are quite similar to each other in their generic
structure, they differ from each other significantly in one crucial regard. Specifically, unlike
the dS−

4 warp factor eA(|w|) = H sinh(σ + b|w|)/b which never vanishes (σ having been
defined to be positive), the dS+

4 warp factor eA(|w|) = H sinh(σ − b|w|)/b has a zero at
b|w| = σ . With a null signal taking an infinite amount of time to travel from the brane to
the location of this zero, this zero serves as a horizon for an observer on the brane [8], with
the brane observer only being sensitive to fluctuation modes in the σ � b|w| � 0 region.
With the dS+

4 parameter y = coth(σ − b|w|) lying in the range coth σ � y � ∞, we see
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that y is infinite at the dS+
4 horizon. Then, with the associated Legendre functions behaving

as P 2
ν (y) → O(yν) + O(y−ν−1),Q2

ν(y) → O(y−ν−1) as y → ∞, the ν = 1 massless dS+
4

graviton and all dS+
4 modes with complex ν = −1/2 ± i (m2/H 2−9/4)1/2 will be normalizable

within the horizon13. With the massless graviton and a massive continuum of modes with
m2/H 2 � 9/4 which satisfy the junction condition of equation (68) by an interplay (of the
real P 2

ν (y) and the real part of Q2
ν(y)) thus providing a conventional continuum normalized

complete basis in the sense of equations (1)–(5), as with the M+
4 brane world, in the dS+

4 brane
world there is no need to test explicitly for completeness.

However, for dS−
4 the situation is quite different since there is now no vanishing of the warp

factor and no horizon, with the coordinate |w| now extending all the way to infinity, and with
the parameter y = coth(σ + b|w|) instead now lying in the 1 � y � coth σ = (1 + H 2/b2)1/2

range. Unlike the previously discussed AdS+
4 brane world case where y approached one from

below as |w| went to infinity, in the dS−
4 case y instead approaches one from above in the large

|w| limit, with equations (48) and (51) having to be replaced by the limits

P 2
ν (y → 1) → P(ν)

[
(y − 1) +

(y − 1)2(ν2 + ν − 3)

6

]
(69)

Q2
ν(y → 1) → 1

(y − 1)
− (ν2 + ν − 1)

2
+ O ((y − 1)ln(y − 1)) ,

where P(ν) = ν(ν2 − 1)(ν + 2)/4 is as given in equation (49). Since the P 2
ν (y) are well

behaved at y = 1, while Q2
ν(y) diverge there, as with the AdS+

4 case, the normalizable sector
will consist of all P 2

ν (coth(σ +b|w|)) modes which satisfy the junction condition on their own
according to

P 1
ν (coth σ) = P 1

ν ((1 + H 2/b2)1/2) = 0, (70)

while the non-normalizable sector will consist of the divergent warp factor wavefunction
Q2

1(coth(σ + b|w|)) (=2/(y2 − 1) in y > 1) massless graviton and all massive

13 With the arbitrary hypergeometric function F(a, b; c, z) being equal to one when its argument z is taken to be zero,
the large y limits of P 2

ν (y) and Q2
ν(y) are readily obtained from their |y| > 1 hypergeometric function representations

of the form P
µ
ν (y) = 2ν+1�(−2ν − 1)�−1(−ν)�−1(−ν − µ)(y + 1)µ/2−ν−1(y − 1)−µ/2F(ν + 1, ν − µ + 1; 2ν +

2, 2/(1 + y)) + 2−ν�(2ν + 1)�−1(ν + 1)�−1(ν − µ + 1)(y + 1)µ/2+ν(y − 1)−µ/2F(−ν, −ν − µ; −2ν, 2/(1 + y)),
Q

µ
ν (y) = eiµπ 2−ν−1π1/2�(ν+µ+1)�−1(ν+3/2)y−ν−µ−1(y2−1)µ/2F(ν/2+µ/2+1, ν/2+µ/2+1/2; ν+3/2, 1/y2).

While these representations show that P
µ
ν (y) and Q

µ
ν (y) will in general be complex in the |y| > 1 region, the form

for P
µ
ν (y) shows that it will actually be real when y and µ are real and the parameter ν takes the value ν = −1/2 + iλ

where λ is real, a value for which the quantity ν(ν + 1) = (ν + 1/2)2 − 1/4 which appears in the defining equation
for the associated Legendre functions of equation (64) is then given as the real ν(ν + 1) = −λ2 − 1/4. With
equation (64) remaining real at ν = −1/2 + iλ, for such values of ν the then real P 2

ν (y) and the real and imaginary
parts of Q2

ν(y) will all separately obey it. However, since equation (64) can only have two independent solutions,
it must be the case that one of these three classes of solutions is redundant. On noting that no matter what the
value of ν, the divergent part of Q2

ν(y) at y = 1 is real while P 2
ν (y) is well behaved there, we thus anticipate that

when y is real and greater than one, it must be the (thus well behaved at y = 1) imaginary part of Q2
−1/2+iλ(y)

which must coincide with the real P 2
−1/2+iλ(y); and since it is not immediately obvious how one may explicitly check

such a connection analytically, we have instead confirmed it numerically. In the following, then we can restrict
the discussion to the use of P 2

−1/2+iλ(y) and Re[Q2
−1/2+iλ(y)] as basis modes (in both the dS+

4 and the dS−
4 brane

worlds). As well as enabling us to show that P
µ
ν (y) is real for real y, real µ and complex ν = −1/2 + iλ, the

above representations of the P
µ
ν (y) and Q

µ
ν (y) are also of use for actual computational purposes when y is greater

than one, since for argument |z| < 1 a hypergeometric function can be represented as the absolutely convergent
power series F(a, b; c, z) = [�(c)/�(a)�(b)]

∑∞
n=0 �(a + n)�(b + n)zn/[�(c + n)n!]. Moreover, for large values

of the parameter λ, the functions P
µ
−1/2+iλ(y) and Re[Qµ

−1/2+iλ(y)] can even be approximated by P
µ
−1/2+iλ(cosh θ) =

λµ−1/2(2/π sinh θ)1/2cos(λθ +µπ/2−π/4)−λµ−3/2(1/2π sinh θ)1/2(µ−1/2)(µ+1/2)coth θ sin(λθ +µπ/2−π/4)

and Re[Qµ
−1/2+iλ(cosh θ)] = λµ−1/2(π/2 sinh θ)1/2cos(λθ + µπ/2 + π/4) − λµ−3/2(π/8 sinh θ)1/2(µ − 1/2)(µ +

1/2)coth θ sin(λθ +µπ/2 +π/4). (It is necessary to carry the first non-leading terms here since the oscillatory leading
terms can vanish at some specific θ values.)
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Q2
ν(coth(σ + b|w|)) modes which obey

Q1
ν(coth σ) = Q1

ν((1 + H 2/b2)1/2) = 0. (71)

While this pattern is thus quite similar to the situation found in the AdS+
4 case, the dS−

4 brane
world differs from it in one key regard, namely that the parameter y is required to be greater
or equal to one rather than less than or equal to it, and thus the completeness of its mode bases
requires independent testing.

7.2. Completeness test for convergent dS−
4 modes

With the general equation (16) taking the form(
m2

1

H 2
− m2

2

H 2

) ∫ coth σ

1
dy fm1(y)fm2(y)

= lim
y→1

[
(y2 − 1)fm2(y)

dfm1(y)

dy
− (y2 − 1)fm1(y)

dfm2(y)

dy

]
(72)

in the dS−
4 case, and with the P 2

ν (y) modes behaving near y = 1 as in equation (69), the P 2
ν (y)

modes form an orthonormal basis, and we can thus normalize thus them according to

Nν =
∫ ∞

−∞
dw e−2A

[
P 2

ν (|w|)]2 = 2b

H 2

∫ coth σ

1
dy

[
P 2

ν (y)
]2

. (73)

With the coth σ argument of P 1
ν (coth σ) in equation (70) being greater than one, the

P 1
ν (coth σ) = 0 condition has no solutions with real ν. Rather, all of its solutions are of

the form ν = −1/2 + iλ where λ is real and discrete14. According to equation (65), for such
solutions the associated squared masses obey m2/H 2 = 9/4 + λ2 and are thus nicely positive.
Additionally, as noted previously, for the particular choice of ν = −1/2 + iλ, the P 2

ν (y) mode
wavefunctions themselves are real.

Having now explicitly identified the dS−
4 normalizable mode basis, to test for completeness

we need to find a set of coefficients Vm for which the expansion

V̂P =
∑
m

VmP 2
ν (y) (74)

reproduces the square step V̂P = V̂ when |w1| < |w| < |w2|, V̂P = 0 otherwise. With
the P 2

ν (y) modes being orthogonal, the coefficients are readily given as Vm = Bm/Nν where
Nν is the normalization factor given in equation (73), where m and ν are related as in
equation (65), and where the Bm are given as

Bm = V̂

∫ |w2|

|w1|
d|w| e−2AP 2

ν (|w|) = − V̂ b

H 2

∫ y2

y1

dyP 2
ν (y) = − V̂ b

H 2

∫ y2

y1

dy(y2 − 1)
d2Pν(y)

dy2

= − V̂ b

H 2

∫ y2

y1

dy

[
d

dy
[(ν − 2)yPν − νPν−1] + 2Pν

]

14 With the dS−
4 brane world range for y being restricted to the finite range 1 � y � coth σ , in cases in which we restrict

to coth σ < 3, we are actually able to use an extremely compact representation for evaluation of P 2
ν (y), P 1

ν (y) and
Pν(y), namely the form P m

ν (y) = (y2 −1)m/2�(ν +m+1)F (−ν +m, ν +m+1, m+1, (1−y)/2)/[2mm!�(ν−m+1))]
which holds for any positive integer m, and the limiting form Pν(y) = F(−ν, ν + 1, 1, (1 − y)/2)) which holds when
m = 0, as each of these hypergeometric function representations can be written as a power series which is absolutely
convergent over the entire 1 � y � 3 range. From these representation we find in a typical case with coth σ = 1.1
that the three lowest positive λ solutions to P 1

−1/2+iλ(coth σ) = 0 are given as λ = 8.624, 15.808 and 22.930, with
the nth positive solution being well approximated by λn ≈ (n + 1/4)π/arccosh(coth σ) when n is large.
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Figure 5. The left panel shows a reconstruction of the square step V̂P (w) = 1, 1.05 �
coth(arccoth(1.1) + b|w|) � 1.06, V̂P (w) = 0 otherwise, via the dS−

4 discrete P 2
ν (coth(σ + b|w|))

mode basis in the typical case where coth σ = 1.1,H/b = 0.458 and b = 1. The right panel
shows a blow-up of the region near the top of the step.

= − V̂ b

H 2

∫ y2

y1

d

dy

[
(ν − 2)

(2ν + 1)
[(ν + 1)Pν+1 + νPν−1] − νPν−1 +

2

(2ν + 1)
(Pν+1 − Pν−1)

]

= − V̂ b

H 2

[
[ν(ν − 1)Pν+1 − (ν + 1)(ν + 2)Pν−1]

2ν + 1

] ∣∣∣∣
y2

y1

. (75)

Given equation (75), V̂P (|w|) can readily be plotted, and we display it in figure 5 as evaluated
through the use of the first 500 modes in the sum. As we see, the basis is indeed capable of
generating the square step to very high accuracy, and with it also nicely displaying the Gibbs
phenomenon, its completeness is thus confirmed.

7.3. Completeness test for divergent dS−
4 modes

As with the P 1
ν (coth σ) = 0 condition, the solutions to Q1

ν(coth σ) = 0 are also all of the
form ν = −1/2 + iλ where λ is again real and discrete, with the solutions to P 1

ν (coth σ) = 0
and Q1

ν(coth σ) = 0 being found to interlace each other15. With it being only the real parts
of the Q2

ν(y) wavefunctions with ν = −1/2 + iλ and y real which are independent of the real
P 2

ν (y), the non-normalizable dS−
4 brane world mode basis consists of the massless graviton

with its real warp factor wavefunction plus the real parts of the Q2
ν(y) wavefunctions with

the appropriate ν = −1/2 + iλ. Then, with the y → 1 limit of equation (69) holding for
the general Q2

ν(y) with arbitrary ν, we see that the real parts of the Q2
ν(y) wavefunctions all

have the same 1/(y − 1) leading behaviour at y = 1 as the massless graviton itself, with the
non-normalizable modes all diverging at y = 1 at one and the same rate.

In order to test for completeness in the Re
[
Q2

ν(y)
]

plus massless graviton sector, we need
to expand the localized square step V̂Q = V̂ when |w1| � |w| � |w2|, V̂Q = 0 otherwise, in
terms of these solutions as

V̂Q =
∑

n

VnRe
[
Q2

ν(y)
]

+
V0

y2 − 1
. (76)

15 The typical case of coth σ = 1.1 yields λ = 4.928, 12.231 and 19.373 as the three lowest positive λ

solutions to Re[Q1
−1/2+iλ(coth σ)] = 0, with the nth positive solution being well approximated by λn ≈

(n − 1/4)π/arccosh(coth σ) when n is large.
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(As previously, for clarity we use n2 here to denote the squared masses of the Q2
ν(y)

sector modes, and use m2 for the P 2
ν (y) sector.) Given the asymptotic limit exhibited in

equation (69), in order to cancel both the leading 1/(y − 1) term and the next to leading O(1)

term from the right-hand side of equation (76), we must constrain the Vn coefficients according
to ∑

n

Vn +
V0

2
= 0,

1

2

∑
n

Vn(ν
2 + ν − 1) +

V0

4
= 0, (77)

to thus enable us to reexpress the square step expansion as

V̂Q =
∑

n

Vn

[
Re

[
Q2

ν(y)
] − 2

y2 − 1

]
, (78)

as subject to the constraint∑
n

Vn[ν2 + ν − 2] = −
∑

n

Vn

n2

H 2
= 0. (79)

On now applying
∫ ∞

0 d|w| e−2AP 2
ν ′(|w|) = (b/H 2)

∫ coth σ

1 dyP 2
ν ′(y) to equation (78)

where ν ′2 + ν ′ − 2 = −m2/H 2, use of the relations

∫ coth σ

1
dyP 2

ν ′(y)Re
[
Q2

ν(y)
] = 4H 2P(ν ′)

(m2 − n2)
, (80)

∫ coth σ

1
dy

P 2
ν ′(y)

(y2 − 1)
= 2H 2P(ν ′)

m2
, (81)

which follow from equations (69) and (72) (with P(ν ′) = ν ′(ν ′2 − 1)(ν ′ + 2)/4 now being
given by m2(m2 − 2H 2)/4H 4) then yields

4b
∑

n

VnP (ν ′)
[

1

(m2 − n2)
− 1

m2

]
=

∑
n

Vn

b(m2 − 2H 2)n2

H 4(m2 − n2)
= Bm, (82)

where Bm is the same function that was already given earlier in equation (75).
Given equation (82), the Vn coefficients can now be found numerically, and lead, for the

case of the first 500 modes in the basis, to the plot displayed in figure 6 (i.e., we restrict
to the first 500 P 1

ν ′(coth σ) zeros and the first 500 Re[Q1
ν(coth σ)] zeros). As figure 6 thus

indicates, the divergent mode basis is every bit as capable of reconstructing the square step
as the convergent one and every bit as capable of recovering the Gibbs phenomenon, and is
thus every bit as complete. As with our earlier examples then, we once again confirm that
completeness is not at all tied to normalizability.

8. Final comments

In this work, we have shown that in and of itself the requirement of normalizability of
basis modes is not at all needed for completeness, and that one can construct localized steps
out of bases whose modes are not normalizable at all. Since the localized steps that we
have constructed out of non-normalizable bases involve expansion coefficients Vn which are
explicitly found to be finite, this suggests that we should be able to construct propagators
involving the modes in which these modes appear as poles which have residues which are
themselves finite. Thus, in sharp contrast to the situation in which propagators are built out of
normalizable modes, for propagators which are built out modes of which are not normalizable,
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Figure 6. The left panel shows a reconstruction of the square step V̂Q(w) = 1, 1.05 �
coth(arccoth(1.1) + b|w|) � 1.06, V̂Q(w) = 0 otherwise, via the dS−

4 discrete Re[Q2
ν(coth(σ +

b|w|))] plus sinh2(coth(σ +b|w|)) mode basis in the typical case where coth σ = 1.1,H/b = 0.458
and b = 1. The right panel shows a blow-up of the region near the top of the step.

these residues must then not be related to normalization constants or to any bilinear integrals
of the modes at all for that matter.

To explicitly construct such divergent mode based propagators, we must first introduce
explicit source terms. For the case of interest to the brane world, the source is typically taken
to be a transverse-traceless energy–momentum tensor STT

µν which is confined to the brane at
w = 0, with equations (10) and (11) being replaced by (see, e.g., [6])[

∂2

∂|w|2 − 4

(
dA

d|w|
)2

+ e−2A∇̃α∇̃α

]
hTT

µν = 0, (83)

δ(w)

[
∂

∂|w| − 2
dA

d|w|
]

hTT
µν = −κ2

5 δ(w)STT
µν , (84)

where κ2
5 is the brane-world gravitational constant.

For the case first of the convergent warp factor M+
4 brane world where equations (83) and

(84) reduce to [
∂2

∂|w|2 − 4b2 + e2b|w|ηαβ∂α∂β

]
hTT

µν = 0, (85)

δ(w)

[
∂

∂|w| + 2b

]
hTT

µν = −κ2
5 δ(w)STT

µν , (86)

on recalling that the Bessel functions obey[
d

d|w| + 2b

] [
αqJ2

(
q eb|w|

b

)
+ βqY2

(
q eb|w|

b

)]

= q eb|w|
[
αqJ1

(
q eb|w|

b

)
+ βqY1

(
q eb|w|

b

)]
, (87)

an explicit solution to equations (85) and (86) can readily be given, namely [9]

hTT
µν(x, |w|) = − κ2

5

(2π)4

∫
d4x ′d4p eip·(x−x ′) [αqJ2(q eb|w|/b) + βqY2(q eb|w|/b)]

q[αqJ1(q/b) + βqY1(q/b)]
STT

µν (x ′)

= −2κ2
5

∫
d4x ′ĜTT(x, x ′, w, 0;αq, βq,M

+
4 )S

TT

µν(x
′), (88)
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where q2 = (p0)2 − p̄2 (q being understood to have the same sign as p0 here), and αq and βq

are arbitrary constants.
The generalization of this solution to the divergent warp factor M−

4 brane world where
we have [

∂2

∂|w|2 − 4b2 + e−2b|w|ηαβ∂α∂β

]
hTT

µν = 0, (89)

δ(w)

[
∂

∂|w| − 2b

]
hTT

µν = −κ2
5 δ(w)STT

µν , (90)

and[
d

d|w| − 2b

] [
αqJ2

(
q e−b|w|

b

)
+ βqY2

(
q e−b|w|

b

)]

= −q e−b|w|
[
αqJ1

(
q e−b|w|

b

)
+ βqY1

(
q e−b|w|

b

)]
, (91)

is of the form [6]

hTT
µν(x, |w|) = κ2

5

(2π)4

∫
d4x ′d4p eip·(x−x ′) [αqJ2(q e−b|w|/b) + βqY2(q e−b|w|/b)]

q[αqJ1(q/b) + βqY1(q/b)]
STT

µν (x ′)

= −2κ2
5

∫
d4x ′ĜTT(x, x ′, w, 0;αq, βq,M

−
4 )S

TT

µν(x
′), (92)

with αq and βq again being arbitrary constants. That the solution of equation (92) satisfies
equation (89) follows directly, since both J2(q e−b|w|/b) and Y2(q e−b|w|/b) separately satisfy
the Bessel function equation given as equation (19) with y being given by y = q e−b|w|/b; and
that the solution satisfies equation (90) follows from equation (91). For this solution we note
that it is the requirement that equation (92) obey equation (90) (technically the Israel junction
condition in the presence of the source) which fixes the overall normalization of the integrand
in equation (92), with none of the αq or βq coefficients needing to be infinite. In fact the same
is true of the M+

4 brane world propagator as its overall normalization is fixed by the junction
condition of equation (86), with the similarity of the M+

4 solution of equation (88) and the M−
4

solution of equation (92) essentially showing complete insensitivity to the normalizability or
lack thereof of basis modes.

In order to be able to make contact with the various bases we used in our construction
of localized steps in the divergent warp factor M−

4 brane world, we need to make specific
choices for the αq and βq coefficients which appear in equation (92). To make contact with the
convergent J2(q e−b|w|/b) modes, we recall that a Taylor series expansion of J1(q/b) around
any ji zero of J1 is of the form

J1(q/b) =
(q

b
− ji

)
J ′

1(ji) =
(q

b
− ji

) [
J1(ji)

ji

− J2(ji)

]
= −

(q

b
− ji

)
J2(ji). (93)

Thus on setting αq = 1, βq = 0 and recalling that each ji zero of J1(ji) is also a zero of
J1(−ji), we see that the propagator of equation (92) contains a set of isolated poles at the zeros
of J1 (a pole at q = bj1 when p0 is positive and a pole at q = −bj1 when p0 is negative), with
a p0 plane contour integration yielding a net pole contribution to the propagator of the form

ĜTT(x, 0, w, 0;αq = 1, βq = 0,M−
4 ) = −i

∑
i

fi(|w|)fi(0)

∫
d3p

(2π)3

eip̄·x̄

2Ei

[e−iEi t − eiEi t ],

(94)
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where

fi(|w|) = b1/2J2(jie−b|w|)
J2(ji)

, Ei = (
p̄2 + b2j 2

i

)1/2
, (95)

and where the summation in equation (94) only needs extend over the ji > 0 modes. Finally,
recalling equation (32), namely∫ ∞

0
d|w| e−2b|w|J 2

2 (m e−b|w|/b) = J 2
2 (m/b)

2b
, (96)

we see that the fi(|w|) basis modes precisely obey equations (1) and (5), with the pole structure
of the M−

4 brane-world propagator ĜTT(x, 0, w, 0;αq = 1, βq = 0,M−
4 ) nicely recovering the

orthonormality and closure structure of the normalizable J 2
2 (m e−b|w|/b) sector basis modes.

In order to make contact with the non-normalizable M−
4 mode sector, we need to take βq to

be non-zero in the M−
4 propagator. Recalling that J1(y), J2(y), Y1(y) and Y2(y) respectively

behave as y/2, y2/8,−2/πy + O(y) and −4/πy2 − 1/π near y = 0, we see that once βq

is non-zero, the integrand [αqJ2(q e−b|w|/b) + βqY2(q e−b|w|/b)]/q[αqJ1(q/b) + βqY1(q/b)]
will behave as 2b e2b|w|/q2 near q2 = 0 independent of the actual values of αq and βq , to thus
give rise to a massless graviton pole term contribution of the form

ĜTT(x, 0, w, 0;αq, βq �= 0,M−
4 , graviton) = ib e2b|w|

∫
d3p

(2π)3

eip̄·x̄

2|p| [e−i|p|t − ei|p|t ]. (97)

Non-normalizable as the M−
4 brane-world graviton might be, as we see, it nonetheless appears

in the propagator with a finite residue16.
To make contact with the M−

4 brane world divergent Y2(q e−b|w|/b) modes we set αq = 0
in ĜTT(x, 0, w, 0;αq, βq,M

−
4 ), and while we immediately then obtain poles at the zeros of

Y1(q/b), since both Y2(q e−b|w|/b) and Y1(q/b) have branch points at q = 0, we also obtain
a cut discontinuity, with the full singular term evaluating to [6]

ĜTT(x, 0, w, 0;αq = 0, βq �= 0,M−
4 ) = ib e2b|w|

∫
d3p

(2π)3

eip̄·x̄

2|p| [e−i|p|t − ei|p|t ]

− i
∑

i

f̃ i (|w|)f̃ i(0)

∫
d3p

(2π)3

eip̄·x̄

2Ei

[e−iEi t − eiEi t ]

+
i

(2π)3

∫
d3p

eip̄·x̄

2Ep

[e−iEpt − eiEpt ]
∫

dm

[
1 − 2i

J2(m e−b|w|/b)

Y1(m/b)

]

×
[

[Y1(m/b)J2(m e−b|w|/b) − J1(m/b)Y2(m e−b|w|/b)]

π
[
4J 2

1 (m/b) + Y 2
1 (mb)

]
]

, (98)

where

f̃ i(|w|) = b1/2Y2(yi e−b|w|)
Y2(yi)

, Ei = (
p̄2 + b2y2

i

)1/2
. (99)

As we again see, despite the lack of normalizability of Y2(m e−b|w|/b) modes, all the terms
which appear in equation (98) do so with coefficients which are nonetheless finite.

16 Despite the fact that the negative tension M−
4 brane world possesses a massless graviton whose residue is finite,

we note that its residue appears with an overall minus sign (namely negative signature) compared to the otherwise
identical in structure positive signature massless graviton residue of the positive tension M+

4 brane world (compare
the first forms given for hTT

µν(x, |w|) given in equations (88) and (92) which differ by an overall minus sign occasioned
by the overall difference in sign between the right-hand sides of equations (87) and (91)). Such negative signature is
thought to indicate an instability of the M−

4 brane world. Nonetheless, even though the M−
4 brane world might thus

not be of direct physical interest, it can still serve as a useful mathematical laboratory for exploring the completeness
properties of bases built out of non-normalizable modes.
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Further examples of this phenomenon may be found in the other divergent warp factor
brane worlds we have been considering. However, unlike the exact propagator solutions of
equations (88) and (92), for the AdS4 and dS4 based brane worlds so far such propagators
have only been constructed in low order. Specifically, for the AdS+

4 brane world for instance
where the background metric of equation (6) takes the explicit form

ds2 = dw2 + e2A(|w|)[dx2 + e2Hx(dy2 + dz2 − dt2)] (100)

with the AdS+
4 warp factor A(|w|) being given in equation (9) and λ being positive, to lowest

order in H the appropriate AdS+
4 propagator is given as [6]

ĜTT
(
x, x ′, w, 0; α̂ν, β̂ν, AdS+

4

)
= 1

2H(2π)3

∫ ∞

−∞
dp0dp2dp3

∫ ∞

0
dp1p1Bν(tanh(b|w| − σ), α̂ν, β̂ν)

× eHx/2 eHx ′/2 e−ip0(t−t ′)+ip2(y−y ′)+ip3(z−z′)Jτ (k e−Hx/H)Jτ (k e−Hx ′
/H) (101)

where k is given by k = [(p0)2 − (p2)2 − (p3)2]1/2, τ and ν are given by τ = ν + 1/2 =
[9/4 + k2/H 2 − (p1)2/H 2]1/2, and the quantity Bν(tanh(b|w| − σ), α̂ν, β̂ν) is given by

Bν(tanh(b|w| − σ), α̂ν, β̂ν)

= 1

H(ν − 1)(ν + 2)

[
α̂νP

2
ν (tanh(b|w| − σ)) + β̂νQ

2
ν(tanh(b|w| − σ))

α̂νP 1
ν (−tanh σ) + β̂νQ1

ν(−tanh σ)

]
. (102)

As constructed the quantity Bν(tanh(b|w| − σ), α̂ν, β̂ν) obeys

δ(w)

[
d

d|w| − 2
dA

d|w|
]

Bν(tanh(b|w| − σ), α̂ν, β̂ν) = δ(w), (103)

and has a small H limit into the analogous M+
4 integrand, namely

Bν(tanh(b|w| − σ), α̂ν, β̂ν) → [αqJ2(q eb|w|/b) + βqY2(q eb|w|/b)]

q[αqJ1(q/b) + βqY1(q/b)]
, (104)

where α̂ν = αqcos(νπ) + βq sin(νπ), β̂ν = (2/π)[−αq sin(νπ) + βqcos(νπ)]. In the small H
limit ĜTT(x, x ′, w, 0; α̂ν, β̂ν, AdS+

4) obeys[
∂2

∂w2
− 4

(
dA

d|w|
)2

− 4
dA

d|w|δ(w) + e−2A∇̃α∇̃α

]
ĜTT

(
x, x ′, w, 0; α̂ν, β̂ν, AdS+

4

)
= eHxδ(x − x ′)δ(t − t ′)δ(y − y ′)δ(z − z′)δ(w), (105)

with the fluctuation

hTT
µν(x, |w|) = −2κ2

5

∫
d4x ′e−Hx ′

ĜTT(
x, x ′, w, 0; α̂ν, β̂ν, AdS+

4

)
STT

µν (x ′) (106)

thus being an exact AdS+
4 brane world small H solution to the AdS+

4 variant of equations (83)
and (84) for an arbitrary STT

µν (x ′) source on the brane.
As regards pole terms in the AdS+

4 brane-world propagator, since (ν −1)(ν +2) = q2/H 2,
the (ν − 1)(ν + 2) term in Bν(tanh(b|w| − σ), α̂ν, β̂ν) generates a massless ν = 1 graviton
pole in the propagator which is found to be of the form [6]

ĜTT
(
x, x ′, w, 0; α̂ν, β̂ν, AdS+

4, graviton
)

= b e2AD̂S(x, x ′,m = 0)

[−(α̂1/β̂1)(H 2/b2) + (1 − H 2/b2)1/2 + (H 2/b2)arccosh(b/H)]
, (107)
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where D̂S(x, x ′,m) is the pure AdS4 spacetime propagator which obeys[
∂2
x − H∂x + e−2Hx

(
∂2
y + ∂2

z − ∂2
t

) − 2H 2 − m2
]
D̂S(x, x ′,m) = eHxδ4(x − x ′). (108)

As we see, despite the lack of normalizability of the graviton wavefunction, the residue at
the AdS+

4 massless graviton pole is nonetheless finite17. Similarly, if we set α̂ν = 0 in
equation (101) we will immediately generate the divergent Q2

ν(tanh(b|w| − σ)) modes as
poles associated with the zeros of Q1

ν(−tanh σ), with these pole terms also possessing finite
residues. Consequently, in the brane world divergent modes are fully capable of appearing
with finite residues in propagators and their lack of normalizability should not be taken as being
a criterion for excluding them. In fact, with the M+

4 propagator ĜTT(x, x ′, w, 0;αq, βq,M
+
4 )

of equation (88) being causal when we set αq = 1, βq = i [9, 10] (so that it is then
based on outgoing Hankel functions), given the small H limit of Bν(tanh(b|w| − σ), α̂ν, β̂ν)

exhibited in equation (104), it will be the ĜTT(x, x ′, w, 0; α̂ν, β̂ν, AdS+
4) propagator with

α̂ν = eiπν , β̂ν = (2i/π) eiπν which will be the AdS+
4 analogue of the outgoing Hankel function

based causal M+
4 brane-world propagator, with this particular AdS+

4 brane world propagator
explicitly being found to be causal [6]. As such, the causal AdS+

4 brane-world propagator
with α̂ν = eiπν, β̂ν = (2i/π) eiπν possesses an explicit massless graviton pole whose residue
is finite, with there thus being no justification for excluding it18.
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